Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion
نویسندگان
چکیده
Whether or not classical solutions of the 2D incompressible MHD equations without full dissipation and magnetic diffusion can develop finite-time singularities is a difficult issue. A major result of this paper establishes the global regularity of classical solutions for the MHD equations with mixed partial dissipation and magnetic diffusion. In addition, the global existence, conditional regularity and uniqueness of a weak solution is obtained for the 2D MHD equations with only magnetic diffusion. © 2010 Elsevier Inc. All rights reserved. MSC: 35B45; 35B65; 76W05
منابع مشابه
Global Regularity for the 2D Magneto-Micropolar Equations with Partial Dissipation
Abstract. This paper studies the global existence and regularity of classical solutions to the 2D incompressible magneto-micropolar equations with partial dissipation. The magneto-micropolar equations model the motion of electrically conducting micropolar fluids in the presence of a magnetic field. When there is only partial dissipation, the global regularity problem can be quite difficult. We ...
متن کاملThe 2D Incompressible Magnetohydrodynamics Equations with only Magnetic Diffusion
This paper examines the global (in time) regularity of classical solutions to the two-dimensional (2D) incompressible magnetohydrodynamics (MHD) equations with only magnetic diffusion. Here the magnetic diffusion is given by the fractional Laplacian operator (−Δ)β . We establish the global regularity for the case when β > 1. This result significantly improves previous work which requires β > 3 ...
متن کاملGlobal regularity for logarithmically critical 2D MHD equations with zero viscosity
In this article, the two-dimensional magneto-hydrodynamic (MHD) equations are considered with only magnetic diffusion. Here the magnetic diffusion is given by D a Fourier multiplier whose symbol m is given by m(ξ) = |ξ| log(e + |ξ|) . We prove that there exists an unique global solution in H(R) with s > 2 for these equations when β > 1. This result improves the previous works which require that...
متن کاملPossessions of viscous dissipation on radiative MHD heat and mass transfer flow of a micropolar fluid over a porous stretching sheet with chemical reaction
This article presents the heat and mass transfer characteristics of unsteady MHD flow of a viscous, incompressible and electrically conducting micropolar fluid in the presence of viscous dissipation and radiation over a porous stretching sheet with chemical reaction. The governing partial differential equations (PDEs) are reduced to ordinary differential equations (ODEs) by applying suitable si...
متن کاملA Theoretical Study of Steady MHD mixed convection heat transfer flow for a horizontal circular cylinder embedded in a micropolar Casson fluid with thermal radiation
In this study, an investigation is carried out for laminar steady mixed 2D magnetohydrodynamic (MHD) flow of micropolar Casson fluid with thermal radiation over a horizontal circular cylinder with constant surface temperature. In the present study, an investigation is carried out on the effects of physical parameters on Casson fluid non dimensional numbers. The governing nonlinear partial diffe...
متن کامل